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Method of Interpolation Factorization (MIF) for the
Solution of Two-Dimensional Diffraction Problems

Vladimir Volman and Jacques Gavan

Abstract—A new method for exact solution of two-dimensional dif-
fraction problems is presented. ‘

I. INTRODUCTION

One of the effective numerical-analytical methods for the solu-
tion of a wide class of diffraction problems is the modified method
of residues {1], [2]. The principal difficulties in this method appear
when we begin the construction of a meromorphic function. Let’s
consider a new method for the solution of this problem. For clear-
ness we shall consider TEM-analysis of a strip line (Fig. 1). As
shown in [2], this problem leads to the construction of a mero-
morphic function F(w), which satisfies the following conditions:

1) F(w) has simple poles for w = «,;, wheren = 1,2, - - -,
oo, and for w = 0;

2) F(anj) + )\njF(_anj) = 07 forn = 1: 27 Y Oo’j = 2’ 37
A,; and «,; are known values [2].
3) F(w) has the asymptotic behavior | w 2 ~3/? for |w| = oo;

4) the residue of F(w) for w = 0 is equal to (—1),

II. PRESENTATION OF THE PROBLEM

Let’s introduce a function similar to those described in [2]

_oexp(rw) o (- w/ap)(i — w/apm)
Fa) = —=—— T A — w/ay) ’
v =lasIn (@ /&) + a In(a,/a)l/7, 6]

where «}, and a3 are unknown zeros of F(w).
F(w) satisfies in such form the 4th condition and fulfill the
asymptotic behavior | w | ~3/2 for the following conditions [2]:

n— oandj = 2, 3, )

’

ay = nw/a,
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Fig. 1. View of strip line.

where a; are known constants [2] and a;, = a; + as. Therefore,

_exp (rw) = (1 = way/nm) (1 ~ way/nw)
Fle) = - @ Rou(w) n=1ﬂ}+l (1 — wa,/nm) ’
3
where v
M
_ (1 = w/ap)( — w/om)
RSM(w) - nl}l (1 _ w/anl) 3 (4)

and M is a number from which the asymptotic value presented in
(2) may be used. Let us introduce the rational fractional function

_Rw@ | _
Gol@) = - —w) e e

Ot e/ - /e~ e
(1= w/a)(1 + 0/ + o/ag)l,-,,

- oy
m s
{am}?M = {—amla Oy s am?n}llw’ {)\ﬁr?)}?M

= {0, Moy Na}! &)

It is evident that
Go(—w) = 1/Gylw). (6)

Let U, be the class of rational fractional functions satisfying (6).
Then the considering problem leads to an interpolation problem in
order to define the function Gy(w) from the class U,,, which is equal
to

Golo} = {ND 1 )

III. BuiLp Up oF THE FuNcTION F(w)

Consider the rational fractional function of class U,

(@ — WG (W) + (o + @W)Golay)
(a; + ) + () — W)Go(e)G(w)

Golw) = ®)

where G(») € U, and at the point w = o;Gpler;) is equal to A,
independently of the selection of G(w). '
The values G,(w) are chosen at the points «,,(3M 2 m 2 2) so

that the (7) is satisfied not only at the point «| but at all the points
a,,(m = 2). According to (8)

G O APy + o
e = N0 (o — e

= (A3 ©)
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i.e., it’s necessary to solve the same interpolation problem but for
the function G,(w) of m > 2. If we continue this process up to the
nth step

G,,,l(w) — (an~l — (‘))Gn(w) + (an~l + w)Gn—-I’ n > 2‘
(an~1 + 0)) + (an—l - w)Gr 71Gn(w)
()\(rr’:—-” - )\(nHAU)(an + am) M
Gy = a— )\trrlhl))\flrhl))(an - a,) = {>\:(n n+ s (10
where G,(w) € U, and G,_; = G,_ («,). This process require
3Mth steps. If we substitute G((w), Gy(w), - - -, G,(w) from (10)

into (8) on the last step the following expression is obtained

Pydw) + Qsn(w)Giapr ()
Oa(—w) + Piy(—w)Gay 1 1(w)

where Pj{w) and Qs(w) are known polynomials of order 3M and
Gy +1(w) € U,

According to (5), however the nominator and denominator of the
function Gy(w) must be polynomials of order 3M and Gy(w) € U,,.
It’s not difficult to check these conditions and show that they are
satisfied if in (11) we put Gy 5 ((w) = 1. As Ry (0) = 1 (see (4))
then

Go(w) = (11

[Psy(@) + Q)] | 11

R = 1 — o’/aky), (12
) = @ Qa0 [ T (0D
Let’s present the (n — 1)th and nth steps of equation (11)
G ((x)) — Pn—l(w) + er—l(w)an 1((,0)
¢ 0, -2(—w) + P,_o(~G,_ ((®)
P
n—l(w) + Qn—-(w)Gn(w) (13)

- Qn— ](—w) + Prz~1(~w)Gn(w) '

Introducing (10) into (13) and comparing the nominators of the
given expressions we obtain the following recurrent equations

Pn+l(w) = (Oé” t+ w) [Pn(w) + Gn Qn(w)L

Quir(@) = (e~ W)[G,Pu(w) + (e,
Po(w) = 0, Qylw) =1,
Pyir(©) + Qo i(0) = a1 + GO + Q01 (14)
Summing and substracting these equations we obtain
A, 1(0) = 4@ + @/a) (1 — G)/(1 + GIB,(w),
B, (@) = [(1 — G)/(1 + GIByw) + (w/ )4, ().
4,(w) = 2 [P,(w) + Qu(w)]/IP,(0) + Q,(0)],
B(w) = [Py(w) — Qu(@)]/[P,0) + Q.(0)].
Ay(w) = 1, Bylw) = —1 (15)
Since
Ay o@) = A, 1(@) + @/, DI = Gy )/
(I + G, B, (@), (16)

we can eliminate B,(w) and B, (w) from (15) and (16). After
transformations we have the following relations

An+2(w) = Cpy IAn+ ]((J)) + dn+ l(w)An(w)’
L= (w/ap(l = Gy /(1 + Gy,
Cpr1 = 1+ (arl/an+l)(1 - Gn+l)/(1 + Gn+l)7

dn+l(w) = (wZ - Oéi)[(l - Gn+l)/(l + Gn+l]/(an/an+])
(17N

Aj(w)
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and according to (4), (12) and (15) we can write

Ryp(w) = —; Aoml)
L= w/a

(13)

If we put y, ;. ((w) = 4, ; (w) /A,{w) then from (17) it is followed

yn+2(w) = Gt + dn+l(w)/yn+l(w)~
n+2

Aua(@) = 1 v(w) and

(19)

Yn+2 &

which is a continued fractional function.
In all expressions we can reach the limit M = oo if the succession
{o,, 3 is arranged in an ordered form as (5). Then

o

Aw) = Hm Ay (w) = H1 V(). (20
M- § =

In the particular case of the strip line problem we can write

_exp (vw)
I3

Flw) =

M
A(@) 11 (1 = o'al/m'n’) /(1 = & /)

M
1}1 (1 + wa;/mm)y (1 — way/mm)(1 — was/mz)
T — wa,/w)

. 21
I'(l — wa,/™T( — was/7) @b

where T'(z) is a Gamma-function. From (17) the following expres-
sions are obtained

Aylw) =1, Aw) =1 — (@/a)( — Gy)/(1 + Gp),

Ax(w) = ci4i(w) + di(w),

As(w) = (cic5 + dy(w)A(w) + cdi(w),

Ayfw) = (a3 + c3dh(w) + cidz(@)A(w) + (ce3 + di(w))d | (w)
(22)

and so on.

Therefore analytical expression for F(w) can be obtained at every
step of the solution. It’s obvious that the described algorithm is
very simple and can be realized using only an elementary computer
program.

IV. CALCULATION RESULTS

The computation process can be simplified by transforming
equation (21) and using known expressions for Gamma-function
we have

'l — wa; /7 _ I'(l + wa,/7)
[l — way/mT( — way/7) T + war /DA + way/7)

4 sin (wa,) sin (was)

- (23)
w sin (wa)a,a;

But

I'(l + wa, /7 O .
Tl + way /MU + was /7 met *

w dyas
mm (mm + way)/)’

(24)
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(z=L/2)/d

Fig. 2. The potential distribution atx — a3, a, = a,/v1.56, L/a = 1, ¢,

=¢ = 1.
M
Vi (w) = 111 (1 + wa,/mr)(1 — wa,/m7)(1 — was/mm)
M wHa,a, + az) waaa
— H <1_ 142 - 3 1233>. (25)
m=1 (mm)” (mm)
Due to the expression
a, sin (wa,) sin (was) Azp(w)
F(w) = - 7 .
w” sin (wa))a.a;  Vi(w)
M
(= oa/m'a)/( — o /o)
| (1 +—2%% ) | 26
m=1 mm(mm + wa;) ¢ (26)

In the simplest case o, = rw/a, when ¢, = ¢,» = 1 [2] and the

residue of F(w) for v = «, is equal

sin (nwa, /ay) sin (nwas/ay) Asp(nw /a))
(mrag/a3) (f'l7|'a:;/61|) V3M(n7r/a|)

H, <1+

Using (27) the potential distribution is calculated and compared
to the results of [2] and exact solution [11]. The coincidence is
excellent with exact solution as seen from Fig. 2. Note that all
results are obtained when

Asynm /ay) _1- (nay/ay) cth (xL/Q2ay))
Viu(nw /ay) 1 = (nay/a)

Re(a,) = (—-1)"

M) e @n

m(m + n)

(28)

V. CONCLUSION

The described method is quite effective. It allows one to solve
the problems practically in closed form and to realize all the re-
quired calculations using small computers only. The most interest-
ing diffraction problems solved by this method are: a thick semi-
infinite plate [3], infinite periodic corrugated structure [4], echelett

1979

[5] and other structures as presented in {6]-[10]. Analytical expres-
sions for all mentioned cases were obtained.
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Optimal Microwave Source Distributions for Heating
Off-Center Tumors in Spheres of High Water
Content Tissue

Carey M. Rappaport and Jorge G. Pereira

Abstraci—A surface distribution of electric dipoles can be used to
represent a multi-element microwave hyperthermia applicator for non-
invasive heating of off-center targets within a spherical high-water-
content tissue volume—such as the head. This paper presents a method
for finding the optimal surface distributions for delivering maximum
power for arbitrarily located deep tumors in such a uniform spherical
volume. The resulting focused power dissipation pattern for any tumor
location has a global maximum at the tumor, and also is the largest
spherical volume for which no healthy tissue is overheated. The opti-
mization uses spherical field harmonics, centered at the tumor target,
summed with suitable complex weights to iteratively minimize surface
power. Once the best field distributions are derived, the current sources
which generate these distributions are determined. The resulting ex-
citations represent the theoretically ideal spherical microwave hy-
perthermia configuration for which no physical applicator system can
surpass.

INTRODUCTION

A major advantage of electromagnetic hyperthermia is the ability
to control constructive and destructive interference in locations re-
moved from the antenna applicator. Ideally, focusing power on a

Manuscript received October 1, 1991; revised March 17, 1992.

The authors are with the Center for Electromagnetics Research, 235 For-
syth Building, Northeastern University, Boston, MA 02115.

IEEE Log Number 9202147.

0018-9480/92$03.00 © 1992 IEEE



