

- [4] F. Sporleder and H. G. Unger, *Waveguide Tapers, Transitions, and Couplers*. New York: Peregrinus, 1974.
- [5] G. L. James, "Analysis and design of TE₁₁-to-HE₁₁ corrugated waveguide mode converters," *IEEE Trans. Microwave Theory Tech.* vol. MTT-29, p. 1059, 1981.
- [6] H. Patzelt and F. Arndt, "Double-plane steps in rectangular waveguides and their application to transformers, irises, and filters," *IEEE Trans. Microwave Theory Tech.* vol. MTT-30, p. 771, 1982.
- [7] H. Auda and R. F. Harrington, "A moment solution for waveguide junction problems," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, p. 515, 1983.
- [8] J. M. Neilson, P. E. Latham, M. Caplan, and W. Lawson, "Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation," *IEEE Trans. Microwave Theory Tech.*, vol. 37, p. 1165, 1989.

Method of Interpolation Factorization (MIF) for the Solution of Two-Dimensional Diffraction Problems

Vladimir Volman and Jacques Gavan

Abstract—A new method for exact solution of two-dimensional diffraction problems is presented.

I. INTRODUCTION

One of the effective numerical-analytical methods for the solution of a wide class of diffraction problems is the modified method of residues [1], [2]. The principal difficulties in this method appear when we begin the construction of a meromorphic function. Let's consider a new method for the solution of this problem. For clearness we shall consider TEM-analysis of a strip line (Fig. 1). As shown in [2], this problem leads to the construction of a meromorphic function $F(\omega)$, which satisfies the following conditions:

- 1) $F(\omega)$ has simple poles for $\omega = \alpha_{n1}$, where $n = 1, 2, \dots, \infty$, and for $\omega = 0$;
- 2) $F(\alpha_{nj}) + \lambda_{nj}F(-\alpha_{nj}) = 0$, for $n = 1, 2, \dots, \infty$, $j = 2, 3$; λ_{nj} and α_{nj} are known values [2].
- 3) $F(\omega)$ has the asymptotic behavior $|\omega|^{-3/2}$ for $|\omega| = \infty$;
- 4) the residue of $F(\omega)$ for $\omega = 0$ is equal to (-1) ,

II. PRESENTATION OF THE PROBLEM

Let's introduce a function similar to those described in [2]

$$F(\omega) = -\frac{\exp(\nu\omega)}{\omega} \prod_{n=1}^{\infty} \frac{(1 - \omega/\alpha'_{n2})(1 - \omega/\alpha'_{n3})}{(1 - \omega/\alpha_{n1})},$$

$$\nu = [a_3 \ln(a_1/a_3) + a_2 \ln(a_1/a_2)]/\pi, \quad (1)$$

where α'_{n2} and α'_{n3} are unknown zeros of $F(\omega)$.

$F(\omega)$ satisfies in such form the 4th condition and fulfill the asymptotic behavior $|\omega|^{-3/2}$ for the following conditions [2]:

$$\alpha'_{nj} = n\pi/a_j, \quad n \rightarrow \infty \text{ and } j = 2, 3, \quad (2)$$

Manuscript received April 29, 1991; revised February 10, 1992.

V. Volman is with The Hebrew University of Jerusalem, The Rechav Institute of Physics, Givat Ram, 91904 Jerusalem, Israel.

J. Gavan is with the Center for Technological Education Holon, P.O.B. 305, Holon 58102, Israel.

IEEE Log Number 9202146.

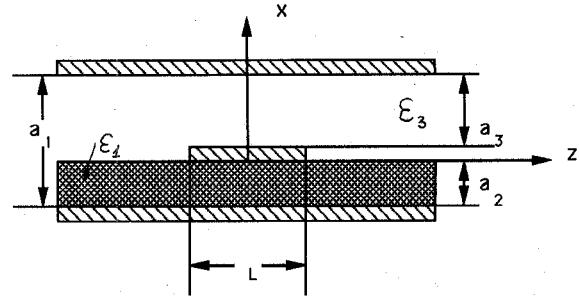


Fig. 1. View of strip line.

where a_j are known constants [2] and $a_1 = a_2 + a_3$. Therefore,

$$F(\omega) = -\frac{\exp(\nu\omega)}{\omega} R_{3M}(\omega) \prod_{n=M+1}^{\infty} \frac{(1 - \omega a_2/n\pi)(1 - \omega a_3/n\pi)}{(1 - \omega a_1/n\pi)}, \quad (3)$$

where

$$R_{3M}(\omega) = \prod_{n=1}^M \frac{(1 - \omega/\alpha'_{n2})(1 - \omega/\alpha'_{n3})}{(1 - \omega/\alpha_{n1})}, \quad (4)$$

and M is a number from which the asymptotic value presented in (2) may be used. Let us introduce the rational fractional function

$$G_0(\omega) = \frac{R_{3M}(\omega)}{R_{3M}(-\omega)} \Big|_{\omega=\alpha_m} = \prod_{n=1}^M \frac{(1 + \omega/\alpha_{n1})(1 - \omega/\alpha'_{n2})(1 - \omega a_3/\alpha'_{n3})}{(1 - \omega/\alpha_{n1})(1 + \omega/\alpha'_{n2})(1 + \omega/\alpha'_{n3})} \Big|_{\omega=\alpha_m}$$

$$= \{\lambda_m^{(0)}\}_1^{3M},$$

$$\{\alpha_m\}_1^{3M} = \{-\alpha_{m1}, \alpha_{m2}, \alpha_{m3}\}_1^M, \{\lambda_m^{(0)}\}_1^{3M}$$

$$= \{0, \lambda_{m2}, \lambda_{m3}\}_1^M \quad (5)$$

It is evident that

$$G_0(-\omega) = 1/G_0(\omega). \quad (6)$$

Let U_ω be the class of rational fractional functions satisfying (6). Then the considering problem leads to an interpolation problem in order to define the function $G_0(\omega)$ from the class U_ω , which is equal to

$$G_0(\alpha_m) = \{\lambda_m^{(0)}\}_1^{3M} \quad (7)$$

III. BUILD UP OF THE FUNCTION $F(\omega)$

Consider the rational fractional function of class U_ω

$$G_0(\omega) = \frac{(\alpha_1 - \omega)G_1(\omega) + (\alpha_1 + \omega)G_0(\alpha_1)}{(\alpha_1 + \omega) + (\alpha_1 - \omega)G_0(\alpha_1)G_1(\omega)} \quad (8)$$

where $G_1(\omega) \in U_\omega$ and at the point $\omega = \alpha_1 G_0(\alpha_1)$ is equal to λ_1 independently of the selection of $G_1(\omega)$.

The values $G_1(\omega)$ are chosen at the points α_m ($3M \geq m \geq 2$) so that the (7) is satisfied not only at the point α_1 but at all the points α_m ($m \geq 2$). According to (8)

$$G_1(\alpha_m) = \frac{(\lambda_m^{(0)} - \lambda_1^{(0)})(\alpha_1 + \alpha_m)}{(1 - \lambda_m^{(0)}\lambda_1^{(0)})(\alpha_1 - \alpha_m)} = \{\lambda_m^{(1)}\}_2^M. \quad (9)$$

i.e., it's necessary to solve the same interpolation problem but for the function $G_1(\omega)$ of $m \geq 2$. If we continue this process up to the n th step

$$G_{n-1}(\omega) = \frac{(\alpha_{n-1} - \omega)G_n(\omega) + (\alpha_{n-1} + \omega)G_{n-1}}{(\alpha_{n-1} + \omega) + (\alpha_{n-1} - \omega)G_{n-1}G_n(\omega)}, \quad n \geq 2,$$

$$G_n(\alpha_m) = \frac{(\lambda_m^{(n-1)} - \lambda_n^{(n-1)})(\alpha_n + \alpha_m)}{(1 - \lambda_m^{(n-1)}\lambda_n^{(n-1)})(\alpha_n - \alpha_m)} = \{\lambda_m^{(n)}\}_{n+1}^M, \quad (10)$$

where $G_n(\omega) \in U_\omega$ and $G_{n-1} = G_{n-1}(\alpha_n)$. This process require $3M$ th steps. If we substitute $G_1(\omega)$, $G_2(\omega)$, \dots , $G_n(\omega)$ from (10) into (8) on the last step the following expression is obtained

$$G_0(\omega) = \frac{P_{3M}(\omega) + Q_{3M}(\omega)G_{3M+1}(\omega)}{P_{3M}(-\omega) + Q_{3M}(-\omega)G_{3M+1}(\omega)} \quad (11)$$

where $P_{3M}(\omega)$ and $Q_{3M}(\omega)$ are known polynomials of order $3M$ and $G_{3M+1}(\omega) \in U_\omega$.

According to (5), however the nominator and denominator of the function $G_0(\omega)$ must be polynomials of order $3M$ and $G_0(\omega) \in U_\omega$. It's not difficult to check these conditions and show that they are satisfied if in (11) we put $G_{3M+1}(\omega) = 1$. As $R_{3M}(0) = 1$ (see (4)) then

$$R_{3M}(\omega) = \frac{[P_{3M}(\omega) + Q_{3M}(\omega)]}{[P_{3M}(0) + Q_{3M}(0)]} \Big/ \prod_{m=1}^M (1 - \omega^2/\alpha_{m1}^2), \quad (12)$$

Let's present the $(n-1)$ th and n th steps of equation (11)

$$G_0(\omega) = \frac{P_{n-2}(\omega) + Q_{n-2}(\omega)G_{n-1}(\omega)}{Q_{n-2}(-\omega) + P_{n-2}(-\omega)G_{n-1}(\omega)}$$

$$= \frac{P_{n-1}(\omega) + Q_{n-1}(\omega)G_n(\omega)}{Q_{n-1}(-\omega) + P_{n-1}(-\omega)G_n(\omega)}. \quad (13)$$

Introducing (10) into (13) and comparing the nominators of the given expressions we obtain the following recurrent equations

$$P_{n+1}(\omega) = (\alpha_n + \omega)[P_n(\omega) + G_n Q_n(\omega)],$$

$$Q_{n+1}(\omega) = (\alpha_n - \omega)[G_n P_n(\omega) + Q_n(\omega)],$$

$$P_0(\omega) = 0, \quad Q_0(\omega) = 1,$$

$$P_{n+1}(0) + Q_{n+1}(0) = \alpha_n(1 + G_n)[P_n(0) + Q_n(0)]. \quad (14)$$

Summing and subtracting these equations we obtain

$$A_{n+1}(\omega) = A_n(\omega) + (\omega/\alpha_n)[(1 - G_n)/(1 + G_n)]B_n(\omega),$$

$$B_{n+1}(\omega) = [(1 - G_n)/(1 + G_n)]B_n(\omega) + (\omega/\alpha_n)A_n(\omega),$$

$$A_n(\omega) = 2[P_n(\omega) + Q_n(\omega)]/[P_n(0) + Q_n(0)],$$

$$B_n(\omega) = [P_n(\omega) - Q_n(\omega)]/[P_n(0) + Q_n(0)],$$

$$A_0(\omega) = 1, \quad B_0(\omega) = -1 \quad (15)$$

Since

$$A_{n+2}(\omega) = A_{n+1}(\omega) + (\omega/\alpha_{n+1})[(1 - G_{n+1})/(1 + G_{n+1})]B_{n+1}(\omega), \quad (16)$$

we can eliminate $B_n(\omega)$ and $B_{n+1}(\omega)$ from (15) and (16). After transformations we have the following relations

$$A_{n+2}(\omega) = c_{n+1}A_{n+1}(\omega) + d_{n+1}(\omega)A_n(\omega),$$

$$A_1(\omega) = 1 - (\omega/\alpha_1)(1 - G_0)/(1 + G_0),$$

$$c_{n+1} = 1 + (\alpha_n/\alpha_{n+1})(1 - G_{n+1})/(1 + G_{n+1}),$$

$$d_{n+1}(\omega) = (\omega^2 - \alpha_n^2)[(1 - G_{n+1})/(1 + G_{n+1})]/(\alpha_n/\alpha_{n+1}) \quad (17)$$

and according to (4), (12) and (15) we can write

$$R_{3M}(\omega) = \frac{A_{3M}(\omega)}{\prod_{m=1}^M (1 - \omega^2/\alpha_{m1}^2)} \quad (18)$$

If we put $y_{n+1}(\omega) = A_{n+1}(\omega)/A_n(\omega)$ then from (17) it is followed

$$y_{n+2}(\omega) = c_{n+1} + d_{n+1}(\omega)/y_{n+1}(\omega),$$

$$A_{n+2}(\omega) = \prod_{s=1}^{n+2} y_s(\omega) \quad \text{and}$$

$$y_{n+2} = c_{n+1} + \frac{d_{n+1}}{c_{n+1} + \frac{d_n}{c_{n-1} + \dots + \frac{d_1}{y_1}}} \quad (19)$$

which is a continued fractional function.

In all expressions we can reach the limit $M = \infty$ if the succession $\{\alpha_m\}_{1}^{3M}$ is arranged in an ordered form as (5). Then

$$A(\omega) = \lim_{M \rightarrow \infty} A_{3M}(\omega) = \prod_{s=1}^{\infty} y_s(\omega). \quad (20)$$

In the particular case of the strip line problem we can write

$$F(\omega) = -\frac{\exp(\nu\omega)}{\omega} \cdot \frac{A_{3M}(\omega) \prod_{m=1}^M (1 - \omega^2 a_1^2/m^2 \pi^2)/(1 - \omega^2/\alpha_{m1}^2)}{\prod_{m=1}^M (1 + \omega a_1/m\pi)(1 - \omega a_2/m\pi)(1 - \omega a_3/m\pi)} \cdot \frac{\Gamma(1 - \omega a_1/\pi)}{\Gamma(1 - \omega a_2/\pi)\Gamma(1 - \omega a_3/\pi)} \quad (21)$$

where $\Gamma(z)$ is a Gamma-function. From (17) the following expressions are obtained

$$A_0(\omega) = 1, \quad A_1(\omega) = 1 - (\omega/\alpha_1)(1 - G_0)/(1 + G_0),$$

$$A_2(\omega) = c_1 A_1(\omega) + d_1(\omega),$$

$$A_3(\omega) = (c_1 c_3 + d_2(\omega))A_1(\omega) + c_2 d_1(\omega),$$

$$A_4(\omega) = (c_1 c_2 c_3 + c_3 d_2(\omega) + c_1 d_3(\omega))A_1(\omega) + (c_2 c_3 + d_3(\omega))d_1(\omega) \quad (22)$$

and so on.

Therefore analytical expression for $F(\omega)$ can be obtained at every step of the solution. It's obvious that the described algorithm is very simple and can be realized using only an elementary computer program.

IV. CALCULATION RESULTS

The computation process can be simplified by transforming equation (21) and using known expressions for Gamma-function we have

$$\frac{\Gamma(1 - \omega a_1/\pi)}{\Gamma(1 - \omega a_2/\pi)\Gamma(1 - \omega a_3/\pi)} = \frac{\Gamma(1 + \omega a_1/\pi)}{\Gamma(1 + \omega a_2/\pi)\Gamma(1 + \omega a_3/\pi)} \cdot \frac{a_1 \sin(\omega a_2) \sin(\omega a_3)}{\omega \sin(\omega a_1)a_2 a_3} \quad (23)$$

But

$$\frac{\Gamma(1 + \omega a_1/\pi)}{\Gamma(1 + \omega a_2/\pi)\Gamma(1 + \omega a_3/\pi)} = \prod_{m=1}^{\infty} \left(1 + \frac{\omega^2 a_2 a_3}{m\pi(m\pi + \omega a_1)}\right), \quad (24)$$

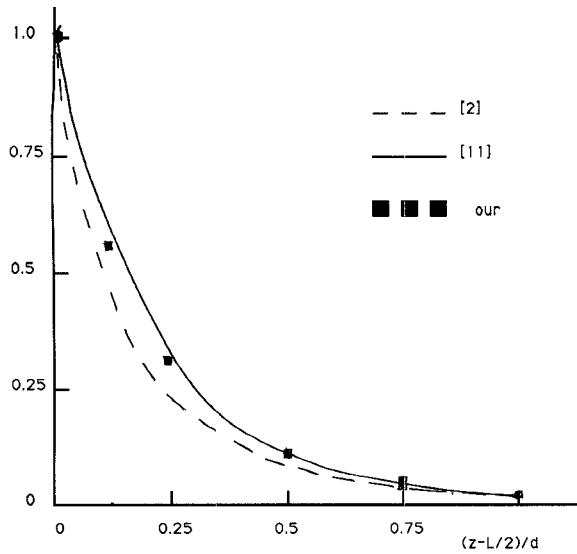


Fig. 2. The potential distribution at $x \rightarrow a_3$, $a_2 = a_1/\sqrt{1.56}$, $L/a = 1$, $\epsilon_1 = \epsilon_3 = 1$.

$$V_{3M}(\omega) = \prod_{m=1}^M (1 + \omega a_1/m\pi)(1 - \omega a_2/m\pi)(1 - \omega a_3/m\pi) \\ = \prod_{m=1}^M \left(1 - \frac{\omega^2(a_1 a_2 + a_3^2)}{(m\pi)^2} + \frac{\omega^3 a_1 a_2 a_3}{(m\pi)^3} \right). \quad (25)$$

Due to the expression

$$F(\omega) = -\frac{a_1 \sin(\omega a_2) \sin(\omega a_3) A_{3M}(\omega)}{\omega^2 \sin(\omega a_1) a_2 a_3} \frac{V_{3M}(\omega)}{V_{3M}(\omega)} \\ \cdot \prod_{m=1}^M (1 - \omega^2 a_1^2 / m^2 \pi^2) / (1 - \omega^2 / \alpha_{m1}^2) \\ \cdot \prod_{m=1}^{\infty} \left(1 + \frac{\omega^2 a_2 a_3}{m\pi(m\pi + \omega a_1)} \right) e^{-\nu\omega} \quad (26)$$

In the simplest case $\alpha_{m1} = n\pi/a_1$ when $\epsilon_{r1} = \epsilon_{r2} = 1$ [2] and the residue of $F(\omega)$ for $\omega = \alpha_{m1}$ is equal

$$R_F(\alpha_{m1}) = (-1)^n \frac{\sin(n\pi a_2/a_1) \sin(n\pi a_3/a_1) A_{3M}(n\pi/a_1)}{(n\pi a_2/a_3) (n\pi a_3/a_1) V_{3M}(n\pi/a_1)} \\ \cdot \prod_{m=1}^{\infty} \left(1 + \frac{n^2 a_2 a_3 / a_1}{m(m+n)} \right) e^{-\nu n\pi/a_1}. \quad (27)$$

Using (27) the potential distribution is calculated and compared to the results of [2] and exact solution [11]. The coincidence is excellent with exact solution as seen from Fig. 2. Note that all results are obtained when

$$\frac{A_{3M}(n\pi/a_1)}{V_{3M}(n\pi/a_1)} = \frac{1 - (n a_2/a_1) \coth(\pi L/(2 a_2))}{1 - (n a_2/a_1)} \quad (28)$$

V. CONCLUSION

The described method is quite effective. It allows one to solve the problems practically in closed form and to realize all the required calculations using small computers only. The most interesting diffraction problems solved by this method are: a thick semi-infinite plate [3], infinite periodic corrugated structure [4], echelett

[5] and other structures as presented in [6]–[10]. Analytical expressions for all mentioned cases were obtained.

REFERENCES

- [1] R. Mittra and S. W. Lee, *Analytical Techniques in the Theory of Guide Waves*. New York: Macmillan, 1971.
- [2] R. Mittra, Ed., *Computer Techniques for Electromagnetics*. New York: Pergamon 1973.
- [3] V. I. Volman, Solution of the diffraction problem of the plane wave by a thick semi-infinite plate. *Transactions of the Moscow Institute Radiotronics, Electronics and Automatics, sr. AutoCAD*, 1988, pp. 18–27.
- [4] V. I. Volman and K. S. Daou, “Etude theorique d’un reseau infiniment conducteur par la methode de factorisation d’interpolation, *J. Optics France*, vol. 20, no. 1, pp. 35–40, 1990.
- [5] V. I. Volman, “Diffraction of the plane wave by an echelett array,” *Radiotronics and Electronics (Moscow)*, vol. 34, no. 4, pp. 521–527, 1988.
- [6] V. I. Volman and E. Baradit, “Electrodynamic analysis of the line phase array with dielectric cover,” *Radiotronics and Electronics (Moscow)*, vol. 35, no. 12, pp. 2484–2491, 1989.
- [7] V. I. Volman and A. Voloskij, “Diffraction of plane wave by a strip grating,” *Orjenickidze*, 1989.
- [8] V. I. Volman, K. U. Pimenov, “Electrodynamic analysis of step waveguide connection of rectangular waveguide,” *Trans. NIIR (Moscow)*, no. 2, pp. 111–116, 1989.
- [9] V. I. Volman and M. A. Mamchin, “Analytical method of electrodynamic analysis of the step connection of two coaxial lines,” *Radiotekhnika (Moscow)*, no. 4, pp. 65–68, 1988.
- [10] —, “Results of the exact analysis of a step connection of coaxial lines with several cross-sectional form and dielectric filling,” Collection, *Electrodynamic System and Devices* (Saratov), pp. 4–10, 1989.
- [11] V. Volman, Ed., “Calculation and design of microwave strip line devices handbook,” *Radio and Telecommunication*, USSR, 1982.

Optimal Microwave Source Distributions for Heating Off-Center Tumors in Spheres of High Water Content Tissue

Carey M. Rappaport and Jorge G. Pereira

Abstract—A surface distribution of electric dipoles can be used to represent a multi-element microwave hyperthermia applicator for non-invasive heating of off-center targets within a spherical high-water-content tissue volume—such as the head. This paper presents a method for finding the optimal surface distributions for delivering maximum power for arbitrarily located deep tumors in such a uniform spherical volume. The resulting focused power dissipation pattern for any tumor location has a global maximum at the tumor, and also is the largest spherical volume for which no healthy tissue is overheated. The optimization uses spherical field harmonics, centered at the tumor target, summed with suitable complex weights to iteratively minimize surface power. Once the best field distributions are derived, the current sources which generate these distributions are determined. The resulting excitations represent the theoretically ideal spherical microwave hyperthermia configuration for which no physical applicator system can surpass.

INTRODUCTION

A major advantage of electromagnetic hyperthermia is the ability to control constructive and destructive interference in locations removed from the antenna applicator. Ideally, focusing power on a

Manuscript received October 1, 1991; revised March 17, 1992.

The authors are with the Center for Electromagnetics Research, 235 Forsyth Building, Northeastern University, Boston, MA 02115.

IEEE Log Number 9202147.