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Fig. 1. View ofstrip line.

where a, are known constants [2] and al = az + as. Therefore,

.
exp (vu)

F(O) = –— R3M(0) ~.rI+ ,
(1 – uaz/rt7r)(l – tia3/mr)

6) (1 – cwz,/mr) ‘—’

Method of Interpolation Factorization (MIF) for the
Solution of Two-Dimensional Diffraction Problems

(3)

where
Vladimir Volman and Jacques Gavan

““ (1 – co/a;J(l – oJ/tx:J
R~M(@) = ~g,

(1 – oJ/rxH,) ‘
(4)

Absfract–A new method for exact solution of two-dimensional dif-
fraction problems is presented. and M is a number from which the asymptotic value presented in

(2) may be used. Let us introduce the rational fractional function

I. INTRODUCTION
Go(u) =

One of the effective mtmerical-analytical methods for the solu-

tion of a wide class of diffraction problems is the modified method

of residues [1], [2]. The principal difficulties in this method appear

when we begin the construction of a mesomorphic function. Let’s

consider a new method for the solution of this problem. For clear-

ness we shall consider TEM-analysis of a strip line (Fig. 1). As

shown in [2], this problem leads to the construction of a meso-

morphic function F(o), which satisfies the following conditions:

.

{CYm}y =

——
1) F’(w) has simple poles for OJ = cq,, where n = 1, 2, . “ . ,

CO, and foru = O;

2) F’(~nj) + hnjF(–tYnj) = O, fern = 1, 2, “ . “ , W,j = 2, 3;
A.j and ~~j are known values [2].

3) F(o) has the asymptotic behavior \ a z ’312 for 1~1 = co;

4) the residue of F(a) for u = O is equal to (– 1),

It is evident that

GO(–co) = 1 / GO(Q). (6)

Let U@be the class of rational fractional functions satisfying (6).

Then the considering problem leads to an interpolation problem in

order to define the function GO(U) from the class Uti, which is equal

toII. PRESENTATION OF THE PROBLEM

Let’s introduce a function similar to those described in [2] Go(am} = { h:) )’;M

III. BUILD UP OF THE FUNCTION F(u)

Consider the rational fractional function of class U.v = [aq in (al /a3) + a2 in (al /a2)l/Tj (1)

Go(@l= (a, – (.o)G,(LJ) + (a, + U) GO(CI,)
(a, + co) + (a, – LO)Go(a,)G,(u)

(8)where a~z and a~~ are unknown zeros of F(oJ).

F(oJ) satisfies in such form the 4th condition and fulfill the

asymptotic behavior \ ~ \ ‘3/2 for the following conditions [2]:

ffjj = rrrrjaj, n+mandj =2,3, (2)
where Gl(u) e Uu and at the point co = al GO(al) is equal to h,

independently of the selection of Gl (w).

The values G,(u) are chosen at the points am(3A4 > m > 2!) so

that the (7) is satisfied not only at the point al but at all the points

rxm(m > 2). According to (8)
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i.e., it’s necessary to solve the same interpolation problem but for

the function G1(ti)ofm > 2. Ifwecontinue this process up to the

nth step

(cI,,-1 – OJ)G,(U) + (an-j + LO)Gn-i
G,, -,(GJ) = n>2,

(a. -, + co) + (a,, _l – CJ)G,l_, G,,(ti)’

(~:-1) _ k~-’))(am + am) = {~@}#+l,
G,,(a,J = (lo)

(1 – A:-’) X;:-’) )(CY. – a,,,) ‘“

where G.(u) = U@ and G._ I = G.. I (c+,). This process require

3Mth steps. If we substitute GI (co), GZ(CO), - “ “ , G,,(co) from (10)
into (g) on the last step the following expression is obtained

Go(u) =
P3M((-0) + Q3M((J)G3M ., (u)

Q3A4( –o) + ~MA –u)G3M + I(w)
(11)

where F’j~(ti) and Q3~(0) are known polynomials of order 3M and

G~~+ ,(ti) e U..

According to (5), however the nominator and denominator of the

function GO(0) must be polynomials of order 3M and GO(0) e U..

It’s not difficult to check these conditions and show that they are

satisfied if in (11 ) we put G3M + I(co) = 1. As R3~(0) = 1 (see (4))

then

R3M(60) =
/

[P,~(ti) + Q3MLu)I ~ (1 - co2/a;,,),

[P3~(0) + Q3~(0)] ,),= i
(12)

Let’s present the (n – 1)th and nth steps of equation (11)

P,, - ~(co) + Q,, - Jw)G,, I(W)
Go(o) =

Q.-2(–co) + ~},-2(–coIGn-Ifco)

_ P._,(u) + Q,, _ (oJ)GJw)
—

Q,, -1(–0) + ~,,-1(-JMLI)’
(13)

Introducing (10) into (13) and comparing the nominators of the

given expressions we obtain the following recurrent equations

P.+ ,(co) = (a,, + o) [P,,(co) + G. Q.(w)],

Q.+ i(o) = (~,, – CO)[G,, ~,,(~) + Q.(u)]>

PO(W) = O, Qo(a) = 1,

~m+ i(o) + Qn + 1(0) = m,,(l + G.) [I’,,(O) + Qn(0)]. (14)

Summing and subtracting these equations we obtain

A . + ,(cJ) = A,,(u) + (u/a,,) [(1 – G,,) /(l + G,,)] B,,(cJ),

& + [(co) = [(1 – G,,) /(1 + G.)lBn(u) + (o /a,,)A,,(ti).

A,,(w) = 2 [P,,(o) + Q,,(a)]/ [P,,(O) + Q,,(O)],

B,,(o) = [P,(m) – Q.(w)]/ [P.(O) + Q.(O)],

‘40(cd) = 1, Bo(co) = – 1 (15)

Since

A.+z(co) = A,, +l(ti) + (a/a. + ,)[(1 – G,I+I)/

(1 + G,+,) IB,, +l(0), (16)

we can eliminate B.(u) and B,, + ,(u) from (15) and (16). After

transformations we have the following relations

A,, + ~(w) = Cn + IA, + ,(a) + d,, + ,(oJ)A,,(co),

Al(w) = 1 – (O/al)(l – GO)/(l + GO),

C,I+I = 1 + (%/%+1)(1 – G,, +I)/(l + G,, +I),

d.+l(m) = (CJJ2– ~;)[(l – G,, +J/(1 + G,, +[]/(cqI/ci,l+l)

and according to (4), (12) and (15) we can write

~3M(@) = ~
A3~(LO)

(18)

~ (1 – @2/~~i)
m=!

If we put y,,+,(~) = A,,+, (co)/Afi(ti) then from (17) it is followed

d d.11+1 d,
YII+2 = Cn+l +

. ..— (19)
c,, + Cn–, + YI

which is a continued fractional function.

In all expressions we can reach the limit M = m if the succession

{a,n}~~ is arranged in an ordered form as (5). Then

.
A(GJ) = Iim A3~(ti) = ,$~1 y,(o).

M-m

In the particular case of the strip line problem we can write

exp (IXJ)
F(a) = –—

u

(20)

fi (1 + C.Jal/mm) (1 – cOa,/mr) (1 – coa, /rim)
m=l

ryl – aal/7r)

r(l – ~~2/Tml – ~a3/2r)
(21)

where r(z) is a Gamma-function. From (17) the following expres-

sions are obtained

AO(CJ) = 1> AI(OJ) = 1 – (ti/al)(l – Go)/(l + Go),

/12(CD) = CIA1(CJ) + d,(o),

A3(CJ) = (C[C3+ d2(u))z4 ,(co) + czdl (o),

z41(ti) = (Clqq + c3dJco) + cld3(co))z4 ,(0) + (CzCj + d3(co))d1 (co)

(22)

and so on.

Therefore analytical expression for F’(u) can be obtained at every

step of the solution. It’s obvious that the described algorithm is

very simple and can be realized using only an elementary computer

program.

IV. CALCULATION RESULTS

The computation process can be simplified by transforming

equation (21) and using known expressions for Gamma-function

we have

r(l – coal/m) r(l + tial/3r)

r(l – w2/7r)r(l – 0a3/~) = r(l + tia2/7r)I’(1 + M3/T)

. al sin (wa,) sin (tia.3)
(23)

co sin (tia ,)a2a3

But

r(l + ~~,/T)

(
-ii 1+

co2a2a3

r(l + tiaz/~)Iyl + coa3/7r) – ,J,=i )rmr(rmr + coal) ‘

(17) (24)
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Fig. 2. The potential distribution atx ~ aj, a2 = al /~, L/a =
=63=1,

l-t

l,e,

V3m(rJ) =,,~, (1 + tial/rn7r)(l – oxsz/rrt7r)(l – ma3/rn7r)

Due to the expression

F(u) = –
al sin (CM@ sin (ma3)A3~(co)——

0? sin (tial)aza~ V3M(LJ)

M

II (1 –wza~/rn27rz)/(1 –o)2/c&l)
,n=l

.—
05

(II 1+
w2a2a3

)
e—““

M=l rrnr(mr + ~al)

[5] and other structures as presented in [6]-[ 10]. Analytical expres-

sionsfor all mentioned cases were obtained.
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Optimal Microwave Source Distributions for Healing
Off-Center Tumors in Spheres of High Water

Content Tissue

In the simplest case ci.l = rZT/al when ~,1 = 6,2 = 1 [2] and the

residue of F(o) for co = an, is equal

,, sin (n7ra1/al) sin (n7ra3/al) .43~(rz~/al)
RF(%1) = (– 1) ~nTa2,a3)

(r3ma3/al) V3~(s-tm/al) /

(27)

Using (27) the potential distribution is calculated and compared

to the results of [2] and exact solution [1 1]. The coincidence is

excellent with exact solution as seen from Fig. 2. Note that all

results are obtained when

~3A~~/al) = 1 – (rsa2/al) cth (mL/(2az))

V,~(mr/al) 1 – (na2/a,)
(28)

Carey M. Rappaport and Jorge G. Pereira
(26)

V. CONCLUSION

The described method is quite effective. It allows one to solve

the problems practically in closed form and to realize all the re-

quired calculations using small computers only. The most interest-

ing diffraction problems solved by this method are: a thick semi-

infinite plate [3], infinite periodic corrugated structure [4], echelett

Abstract—A surface distribution of electric dipoles can be used to

represent a multi-element microwave hypertbermia applicator for non-

invasive heating of off-center targets within a spherical high-water-
content tissue volume—such as tbe head. This paper presents a mctbod

for finding the optimal surface distributions for delivering maximum
power for arbitrarily located deep tumors in snch a uniform spherical
volume. The resulting focused power dissi~a~ion pattern for any tumor

location has a global maximum at the tumor? and also is the largest
spherical volume for which no healthy tissue is overbeatpd. The opti-

mization uses spherical field harmonics, ce@ered at the tumor target,
summed with suitable complex weights to iteratively minimize surface
power. Once the best field distributions are derived, the current sources
which generate these distributions are determined. The resulting ex-

citations represent the theoretically ideal spherical microwave hy -
pertbermia configuration for which no physical applicator system can
surpass.

INTRODUCTION

A major advantage of electromagnetic hyperthermia is the ability

to control constructive and destructive interference in locations re-

moved from the antenna applicator. Ideally, focusing power on a
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